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Abstract

Trace concentrations of NO and NO2 are detected with a dye laser operating near 454 nm. NO
is detected by a (2 + 2) resonance-enhanced multiphoton ionization process by means of NO
A 2•+-X 211(0, 0) transitions with miniature electrodes, and NO2 is detected by a one-photon
absorption photoacoustic process by means of NO2 A' 2B1(0, 8, 0) - X 2 A1(0, 0, 0) transitions
with a miniature microphone. Rotationally resolved excitation spectra show that the spectral
resolution is sufficiently high to identify these species at 1 atm. The technique's analytical
merits are evaluated as functions of concentration, pressure, and laser intensities. Low laser
intensities favor NO2 photoacoustic detection whereas high laser intensities favor NO ionization.
Limits of detection (signal-to-noise ratio 3) of 160 parts in 10' for NO and 400 parts in 10' for
NO2 are determined at 1 atm for a 10-s integration time. Signal response and noise analyses
show that three decades of NO/NO2 mixtures can be measured with a computational relative
error in concentration that is three times the relative error in measuring the NO and NO2 signals.
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1. INTRODUCTION

There is a growing interest in laser-based analytical techniques for remote or in situ trace

detection of nitric oxide (NO) and nitrogen dioxide (NO2) [1, 3]. Much of this interest stems

from concerns related to public heath and the environment. These compounds play key roles in

catalytic ozone destruction and in acid rain and photochemical smog formation. NO and NO2 are

hazardous pollutants emitted predominantly from motor vehicle exhaust and stationary sources,

such as electric utilities and industrial boilers. The U.S. Federal Environmental Protection Agency

(EPA) has established a 25-ppm National Ambient Air Quality Standard (NAAQS) threshold limit

for NO with concentrated exposures not to exceed 100 ppm for 15 min [4]. NO2 is estimated to

be 30 times more toxic than NO [4]. The detection of NO and NO2 is also important to laser

photofragmentation/fragment detection techniques being developed for the chemical analysis of

propellants and explosives because they are generated in the photolysis of many energetic

materials [5-7].

Laser photoacoustic (PA) and resonance-enhanced multiphoton ionization (REMPI)

spectroscopy are sensitive techniques for NO and NO2 trace detection. PA detection is based on

sensing the pressure wave generated by the heat released from an excited analyte caused by

collisional deactivation. PA detection is particularly effective at high pressures for weak

fluorescers or species that predissociate with laser absorption. High sensitivity and selectivity can

be achieved using a narrow band, high-power pulsed laser. REMPI detection is based on sensing

the ion signal following excitation of the analyte. The ionization process is enhanced if there are

electronic states resonant with the energy of one or more of the photons. Ion detection can be

accomplished using a mass spectrometer or a pair of miniature electrodes. With electrode-based

detection, the bulky mass spectrometer is no longer needed. However, species selectivity is then

based solely on excitation wavelength. In both PA and REMPI detection, using a laser frequently

increases the response without increasing the noise.

The analytical application of PA for NO2 detection using visible laser radiation has been

reported. Fried measured the 488-nm PA detection limit of NO2 in NO, N2, H20 and 02
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matrices with identical sensitivities of 5 ppb (S/N=1) in all matrix gases except 02 [8]. Oxygen

decreased the NO2 signal by 20% because of electronic energy transfer between the two

molecules. From low-resolution excitation NO2 spectra recorded in the range 480-625 nm,

Claspy et al. [9] estimated a 4-ppb sensitivity (S/N=I) at 600 nm for a laser power of 1 W [9];

Terhune and Anderson measured NO2 sensitivities better than 0.1 ppb using a 514.5-nm Ar+ ion

laser [10]; and Angus et al. estimated a 10-ppb NO2 detection limit from low-resolution cw dye

laser excitation scans over the range of 580-610 nm [11].

Recently, we have studied NO and NO2 detection by ultraviolet (UV) laser spectroscopy

[12, 3]. NO was detected by (1+1) REMPI via its A2Z+-X2 ll (0,0) transitions near 226 nm,

while NO2 was detected by laser photofragmentation with subsequent fragment NO ionization

also using 226-nm radiation. The NO and NO2 limits of detection (LOD) at 100 Torr were 1 and

22 ppb, respectively, for a S/N=3, a laser energy of 10 pJ, and 10-s integration time [12]. The

two species could not be differentiated, however, because only the total NO ion signal was

measured.

The detection and discrimination of NO and NO2 by a single, laser-based apparatus are

important analytical challenges. Part of the challenge stems from NO and NO2 absorbing in

different spectral regions. NO2 absorbs in the visible; whereas, NO absorbs in the UV. NO2

predissociates at wavelengths less than 400 nm making ionization and PA detection difficult.

Although both NO and NO2 absorb in the infrared, few lasers can be tuned in the region where

both species absorb. Also, H20 is a major spectral interferant in the infrared.

In the present study we employ a single laser operating near 454 nm to detect trace NO and

NO2 concentrations in N2 at atmospheric pressure by (2+2) REMPI and PA spectroscopy.

Rotationally resolved excitation spectra are recorded and characterized. To the best of our

knowledge, this is the first time that a high-resolution NO2 visible PA spectrum has been reported.

The effects of laser energy, pressure, and species concentration on the REMPI and PA signals are

determined and discussed. A single laser coupled to a pair of miniature electrodes and a
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microphone minimizes the instrumental complexity and makes the technique attractive for NO and

NO2 detection.

2. EXPERIMENTAL

The experimental schematic is depicted in Figure 1. An excimer-pumped dye laser (Lumonics,

HYPER EX-400, and HYPER DYE-300) operating at 10 Hz with a line width of -0.07 cm- I

was used to excite NO or NO2 around 454 nm. The energy per pulse was typically 15 mJ with

better than 10% shot-to-shot variation, and the pulse duration was -20 ns (FWHM). A

calorimeter (Scientech) and Joulemeter (Molectron Detector, J4-05) monitored the laser energy.

The laser beam diameter was 3 mm. Two 5-cm-diameter quartz lenses with focal lengths of 12

and 50 cm focused the laser beam for REMPI detection. The laser beam was not focused for PA

detection.

The sample cell was a six-arm (4-cm diameter) stainless steel cross. Opposing arms with

quartz Brewster windows provided optical access to the sample. Two other arms provided access

for a pair of laboratory-constructed stainless steel electrodes and a directional electret condenser

microphone (Radio Shack 270-090), both mounted on separate vacuum feedthrough flanges. A

mechanical pump drew the sample gas through the cell, and a needle valve upstream of the cell

regulated the flow rate. The sample gas pressure was varied to 1 atm and monitored with a

capacitance manometer (Edwards 600A-1000T-R16-H21X). Various concentration of NO and

NO2 were prepared by serial dilution of 0.1% NO in N2 or 500-ppm NO2 in N2 with N2 buffer

gas. All the gases were obtained from Matheson with a purity of >99.999%. The NO

measurements were recorded using N2 as a diluent instead of air to eliminate reduction of NO by

the 2NO + 02 - 2N0 2 three-body reaction. At room temperature, 50% of NO (100 ppm)

oxidizes to NO2 in 40 min, the time required for a typical experimental run. The NO2

measurements were also recorded using N2 buffer gas for experimental consistency. Samples

were flowed through the cell to prevent accumulation of photolysis products.
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For REMPI detection, the laser beam was focused at the center of two square electrodes

(1.25 x 1.25 cm) separated by 3 mm. The collection voltage was 400 V for all measurements.

The ion signal was amplified by a current amplifier (Keithly 427, gain 105-106 V/A, time constant

0.01 ms) and displayed on a 125-MHZ digital oscilloscope (LeCroy 9400). For PA detection, the

electrodes were removed from the laser-interaction region and a small microphone was positioned

2-3 mm from the laser beam. The focusing lens was also removed from the beam path. The

microphone was encased in a small cylinder (9-mm diameter by 6 mm long) and had a 3-mm 2

active area. Its frequency response was flat from 20 to 1500 Hz. A 9-V battery and 1-k4 resistor

biased the microphone, and a 3.3-pF capacitor coupled the signal to the current amplifier. Signals

from the amplifier were then directed to the digital oscilloscope. A PC-AT computer interfaced

to a gated integrator (Stanford Research Systems SR250) with 3-shot averaging recorded and

stored the spectra. The sensitivity signals were integrated for 10 s at 10 Hz for 100-shot

averaging and read from the oscilloscope. The background noise was measured with the laser

operating at the excitation frequencies and N2 flowing through the sample cell. Twenty

independent measurements of the noise with 100-shot averaging were made. The limiting noise in

this study is due to fluctuations in background ionization and laser energy for the photoionization

detection and window vibrations for the PA detection.

3. RESULTS AND DISCUSSION

A potential-energy diagram that shows the physical processes in NO2 PA and NO (2+2)

REMPI detection is presented in Figure 2. In PA detection, 454-nm radiation excites NO2 into

the A' (2B I) or A (2B2) states. Radiationless deactivation of excited NO2 by inter- and intra-

molecular interactions causes heat release inducing a pressure wave that generates the PA signal.

Loss mechanisms for PA detection include ionization, dissociation, energy transfer, and

fluorescence. PA detection is favored over ionization or dissociation at low laser intensities. At

low pressures, fluorescence competes effectively with PA detection. The 454-nm laser excitation

of NO2 results in both discrete fluorescence and continuum emission [13-15]. The continuum

emission is prompt (<100 ns) and decays by intramolecular radiationless transitions [14]. Longer

time-scale quenching mechanisms include intermolecular and buffer gas radiationless collisions.
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In the visible and at low laser intensities, NO has a small absorption coefficient, hence, no

PA response. At high laser intensities, NO is ionized by 4-photon absorption, (2+2) REMPI.

The ionization process is enhanced at 454 nm by 2-photon resonance with the A2•÷ state. At

high laser intensities NO2 also contributes to the "ambient" NO REMPI signal because it

photodissociates. As shown in Figure 2, two 454-nm photons excite NO2 into the B(2B2) state.

Electronically excited NO2 then quickly [161 (<40 psec) predissociates [17] into NO

X211 + 0 (3p) and NO X211 + 0 ('D). For the NO X2I1 + O('D) dissociation pathway, NO is

predominantly formed in the V"=0 and 1 vibrational levels because of intramolecular relaxation

in the intermediate A' and A states that are resonant with the energy of one 454-nm photon [18].

As a result, the nascent NO (u"=0) from NO2 photoionizes just like ambient NO (o-"=0).

NO (2+2) REMPI and NO2 PA laser excitation spectra were recorded between 440-470 nm

at various concentrations and pressures. Presented in Figure 3 are typical NO2 PA and NO

REMPI spectra recorded in the 453.5-454.5-nm region. The laser was focused for NO REMPI

detection, but not for NO2 PA detection. The concentrations of NO and NO2 in N2 were 95 and

65 ppm, respectively, and the cell pressure was approximately 1 atm. The prominent features of

spectrum A are attributed to the P22+0 12, P12+0 22, and O02 branches of the A 2Z-X 21[ (0,0) band.

These features are the result of 2-photon selection rules governing the (2+2) NO REMPI by

means of the resonant A2E' state. Thus, the visible REMPI spectrum exhibits strong, main 0

and S branches (AJ=+_2) in addition to the P, Q, and R branches (AJ=-0,±) observed in 226-nm

(1+1) NO REMPI. An enhancement of the rotational lines of the 02 branch (e.g., J = 10.5) that

is due to double resonance processes is not observed as in low-pressure environments since these

processes are quenched at 1 atm. The 0 and S branches enhance the NO REMPI selectivity

because they contribute additional "fingerprints" for NO identification. In addition, the O12

branch is red-shifted from all the other congested branches and exhibits a larger rotational energy

spacing. These features are particularly attractive for NO detection at atmospheric conditions

because collisions degrade the spectral resolution.

The visible spectrum of NO2 is complex due to Coriolis and Renner-Teller rovibronic

interactions. Imasaka et al. characterized the vibrational levels of NO2 
2B1 and 2B2 states by
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time-resolved spectroscopy [19]. Based on their work, and the works of Hardwick [20] and

Douglas and Huber [21], we assign the sharp features of the NO2 to P and Q rotational lines of

the A' 2B1-X 2A1 [(0,8,0)-(0,0,0)] band. Other vibrational bands with higher intensities were

observed, but the (0,8,0) band was studied because of its proximity to the NO 012 branch. As

shown in Figure 3, the rotational resolution at 1 atm is sufficiently high to discriminate NO and

NO2 by laser wavelength excitation.

Presented in Figure 4 is the laser energy dependence of NO2 PA, NO REMPI, and NO from

NO2 REMPI signals with 12- and 50-cm lenses. Fitting the data to powers of the laser energy

yields powers of 1 for NO2 PA, 3.9 for NO REMPI when a 50-cm lens is used, and 1.9 and 3.0

for NO and NO2 REMPI, respectively, when a 12-cm lens is used. The NO2 PA signal response

is approximately linear with laser energy and suggests an unsaturated 1-photon absorption

process, as expected for PA detection. The NO (2+2) REMPI quartic dependence indicates a

4-photon process at low laser intensity; whereas, the near quadratic dependence indicates

saturation from the intermediate A2Z+ state into the ionization continuum subsequent to 2-photon

absorption. A geometric effect caused by strong conical focusing of the laser beam is ruled out,

as it would yield a 3/2-power dependence [22]. The REMPI response using the 12-cm lens was

100 times greater than that using the 50-cm lens. Thus, the 12-cm lens was used for the pressure

and LOD studies. Also, the laser beam was not focused for the NO2 PA studies because focusing

enhanced multiphoton dissociation and decreased the signal.

Figure 5(a) shows the N2 buffer gas pressure dependence on NO2 PA and NO REMPI signals

at a fixed NO or NO2 density. The NO2 PA signal increases until around 400 Torr and then levels

off. The PA signal is proportional to kM/(kM+A), where A is the spontaneous transition rate, k

is the quenching rate constant, and M is the density of the buffer gas [23]. Thus, a leveling off

occurs when the radiationless quenching rate, kM, is greater than radiation rate, A. For NO

REMPI, the signal increases to a maximum near 100 Torr and then decreases nonexponentially.

The increase is due to charge amplification by N2; whereas, the decrease is due to NO A2V+

quenching by N2 and three-body recombination of NO+, N2, and electrons.
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Presented in Figure 5(b) is the PA and REMPI signal dependence on pressure for 86-ppm NO

and 147-ppm NO2. As the density of NO or NO2 increases with the pressure, these plots

represent the combined pressure and density effects. The NO2 PA signal has a 0.7 power

dependence with pressure. This tendency to saturate is due to the pressure saturation observed in

Figure 5(a). The NO REMPI response is approximately linear with pressure and suggests that the

pressure effects at fixed density, illustrated in Figure 5(a), are small compared to the NO REMPI

response from increased density.

Figures 6(a) and 6(b) show sensitivity plots of the NO2 and NO PA and NO and NO2 REMPI,

respectively, at 453.856 nm. Measurements were made under flowing conditions at -1 atm by

serial dilution of NO or NO2 with N2. The ionization signals were measured at the peak ion

signal; whereas, the PA signals were measured as the difference between the first maximum and
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minimum of the pressure wave. The slope of the sensitivity plot is the response (millivolts/parts

per million [mV/ppm]). Responses for NO and NO2 PA and REMPI are listed in Table 1 for

both 453.856-nm and 454.348-nm laser excitation. The NO2 PA signals are linear to 400 ppb,

whereas the NO and NO2 REMPI signals are linear to 20 ppb. The NO PA responses were below

the sensitivity of the apparatus and are listed as zero.

Table 1. NO and NO2 Responses by REMPI and PA Detection at Laser Wavelengths
of 453.856 and 454.348 nm.

453.856 nm 454.348 nm

NO NO2  NO NNO 2_

PA 0.0 0.74 0.0 0.71

REMPI 1.12 0.61 0.33 0.18

In this study, the LOD is defined as the concentration that produces a signal equaling three

times the standard deviation of the noise. The standard deviation of the noise was determined

from 20 independent 100-shot averages with only N2 flowing through the sample cell. Table 2

shows the LOD for NO and NO2 in N2 by REMPI and PA detection at the two-laser-excitation

wavelengths. The NO2 PA LOD would be approximately 5% less in air [8] compared with N2;

whereas, the NO and NO2 REMPI LODs would not change [12]. The NO REMPI LOD at

453.856 nm is approximately a factor of 3 less than that measured at 454.348 rm. This

difference is due to the difference in signals, apparent in the NO REMPI spectrum, because the

noise is same for both laser wavelengths. The NO2 PA LODs are similar for both wavelengths.

We project higher NO2 PA sensitivities by using the P and Q transitions near 454.7 mm or other

vibrational bands that are more intense than the (0, 8 ,0) band.

An upper bound of the relative response error due to computing the relative concentration

error of the mixtures is determined by numerical analysis. The combined PA and REMPI signals

can be expressed by two simultaneous linear equations, whose matrix representation is:
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(NO) RpA(NO 2 ) ][[NO2]1  SPA
RREMPI(NO) RREpIA(N0 2) [NO2]] SPAM(1

Table 2. NO and NO2 LOD (ppm) by REMPI and PA Detection at Laser Wavelengths
of 453.856 and 454.348 nm

PA (2+2) REMPI

Laser Wavelength NO NOP) NO NOR

453.856 nm 0.41 0.18 0.34

454.348 nm - 0.42 0.63 1.10

Equation 1 can be rewritten in vector notation as, Rx = s, where the elements of the response

matrix, R, are the NO and NO2 responses to PA and REMPI detection; the elements of the signal

vector, s, are the total PA and REMPI signals from a NO-NO 2 mixture; and the elements of

unknown vector, x, are the NO and NO2 concentrations. The condition number of the response

matrix [24], K = IRI IR-'I, where JR1 is the norm of R, scales the relative signal error, jsI/IsI,

to the relative concentration error, exxj/ x[. The condition numbers for the 453.856- and

454.348-nm PA and REMPI detection systems are 2.8 and 2.7, respectively, using the values

presented in Table 1 and row norm. Thus, the relative error in calculating the NO and NO2

concentrations will be no more than 2.8 times the relative signal error.

The range of NO-NO 2 mixtures that can be accurately measured by REMPI is determined by

the noise in the signals while measuring the NO and NO2 responses. The signal noise is

Ns = n(AE/E)m"2, where n is the power of the signal dependence on laser energy (see Figure 4),

AE/E is the variation in laser energy, and m is the number of laser pulses. The signal noises for

NO and NO2 are 0.02 and 0.03, respectively, for 10% (shot-to-shot) laser energy variation and

100-shot averaging. Requiring the ratio of signals from NO and NO2 to be greater then three

times the relative signal noise yields,
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3N5  W rR 1 (NO2))< [NO] 1 RR1 W, (NO2)(2
3, REWI (NO)) [NO21 3NjI RREW, (NO))(2

Thus, nearly three decades of NO-NO 2 mixtures centered around [NO]/[NO 2]=½ can be

accurately measured using our present apparatus.

4. CONCLUSION

The analytical utility of a combined PA and REMPI technique has been demonstrated for the

trace detection of NO and NO2 in N2 at atmospheric pressure using a nan'ow-band tunable dye-

laser operating near 454 nm. Rotationally resolved spectra of the NO A2F,+-X 2II (0,0) and NO2

A' 2B,(0,8,0)-X 2A1(0,0,0) bands suggest that the technique is highly selective based on

excitation wavelength. The sensitivity of the technique is also high with LODs (S/N=3) of 100

and 400 ppb for (2+2) NO REMPI and NO2 PA, respectively, for 10-s integration time. Higher

sensitivities are projected with an increase in laser energy, different excitation schemes, and an

improved apparatus. The results reveal that the technique enables a simple instrument design to

be used for the sensitive measurement of these compounds and NO/NO2 mixtures.
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